How to Implement the Spectral Transformation
نویسندگان
چکیده
The general, linear eigenvalue equations (H XM)z = 0, where H and M are real symmetric matrices with M positive semidefimte, must be transformed if the Lanczos algorithm is to be used to compute eigenpairs (X,z). When the matrices are large and sparse (but not diagonal) some factorization must be performed as part of the transformation step. If we are interested in only a few eigenvalues a near a specified shift, then the spectral transformation of Ericsson and Ruhe [1] proved itself much superior to traditional methods of reduction. The purpose of this note is to show that a small variant of the spectral transformation is preferable in all respects. Perhaps the lack of symmetry in our formulation deterred previous investigators from choosing it. It arises in the use of inverse iteration. A second goal is to introduce a systematic modification of the computed Ritz vectors, which improves the accuracy when M is ill-conditioned or singular. We confine our attention to the simple Lanczos algorithm, although the first two sections apply directly to the block algorithms as well. 1. Overview. This contribution is an addendum to the paper by Ericsson and Ruhe [1] and also [7]. The value of the spectral transformation is reiterated in a later section. Here we outline our implementation of this transformation. The equation to be solved, for an eigenvalue À and eigenvector z, is (1) (H AM)z = 0, H and M are real symmetric n X n matrices, and M is positive semidefinite. A practical instance of (1) occurs in dynamic analysis of structures, where H and M are the stiffness and mass matrices, respectively. We assume that a linear combination of H and M is positive definite. It then follows that all eigenvalues X are real. In addition, one has a real scalar a, distinct from any eigenvalue, and we seek a few eigenvalues X close to a, together with their eigenvectors z. Ericsson and Ruhe replace (1) by a standard eigenvalue equation (2) [c(H-aM)"1CT-rl]y = 0, where C is the Choleski factor of M; M = CTC and y = Cz. If M is singular then so is C, but fortunately the eigenvector z can be recovered from y via z = (H oM)"'CTy. Of course, there is no intention to invert (H oM) explicitly. The Received May 14, 1984; revised December 20, 1985. 1980 Mathematics Subject Classification. Primary 65F15. *This research was supported in part by the AFOSR contract F49620-84-C-0090. The third author was also supported in part by the Swedish Natural Science Research Council. **The paper was written while this author was visiting the Center for Pure and Applied Mathematics, University of California, Berkeley, California 94720. ©1987 American Mathematical Society 0025-5718/87 $1.00 + $.25 per page
منابع مشابه
Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...
متن کاملA Simple Transformation Method in Skewness Reduction
Statistical analysis of non-normal data is usually more complicated than that for normaldistribution. In this paper, a simple root/power transformation technique developed by Niaki, et al [1]is extended to transform right and left skewed distributions to nearly normal. The value of theroot/power is explored such that the skewness of the transformed data becomes almost zero with anacceptable err...
متن کاملDynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture
Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...
متن کاملNumerical Study of Unsteady Flow of Gas Through a Porous Medium By Means of Chebyshev Pseudo-Spectral Method
In this work, we first reformulate the unsteady flow of gas through a porous medium problem in [0,+∞) to a problem in [-1,1] by variable transformation μ = (x-s)/(x+s), and using spectral collocation method based on Chebyshev polynomials to approximate the resulting problem. The comparison of the results obtained by this method with results obtained by other methods shows that this method provi...
متن کاملA new algorithm for solving Van der Pol equation based on piecewise spectral Adomian decomposition method
In this article, a new method is introduced to give approximate solution to Van der Pol equation. The proposed method is based on the combination of two different methods, the spectral Adomian decomposition method (SADM) and piecewise method, called the piecewise Adomian decomposition method (PSADM). The numerical results obtained from the proposed method show that this method is an...
متن کامل3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کامل